Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naturwissenschaften ; 103(5-6): 44, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27142598

RESUMO

This study aimed to assess the enamel ultrastructure in modern otariid pinnipeds and in the extinct walrus Pelagiarctos. Teeth of the New Zealand fur seal (Arctocephalus forsteri), sea lion (Phocarctos hookeri), and fossil walrus Pelagiarctos thomasi were embedded, sectioned, etched, and analyzed via scanning electron microscopy. The enamel of NZ otariids and Pelagiarctos was prismatic and moderately thick, measuring 150-450 µm on average. It consisted of transversely oriented Hunter-Schreger bands (HSBs) from the enamel-dentine junction (EDJ) to near the outer surface, where it faded into prismless enamel less than 10 µm thick. The width of HSB was variable and averaged between 6 and 10 prisms, and they presented an undulating course both in longitudinal and cross sections. The overall organization of the enamel was similar in all teeth sampled; however, the enamel was thicker in canines and postcanines than in incisors. The crowns of all teeth sampled were uniformly covered by enamel; however, the grooved incisors lacked an enamel cover on the posterior side of the buccal face. Large tubules and tuft-like structures were seen at the EDJ. HSB enamel as well as tubules and tufts at the EDJ suggest increased occlusal loads during feeding, a biomechanical adaptation to avoid enamel cracking and failure. Despite overall simplification in tooth morphology and reduced mastication, the fossil and modern pinnipeds analyzed here retained the complex undulating HSB structure of other fossils and living Carnivora, while other marine mammals such as cetaceans developed simplified radial enamel.


Assuntos
Adaptação Fisiológica , Caniformia/anatomia & histologia , Esmalte Dentário/ultraestrutura , Fósseis , Morsas/anatomia & histologia , Animais , Comportamento Alimentar , Microscopia Eletrônica de Varredura
2.
PLoS One ; 10(12): e0135551, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26651027

RESUMO

Living sperm whales are represented by only three species (Physeter macrocephalus, Kogia breviceps and Kogia sima), but their fossil record provides evidence of an ecologically diverse array of different forms, including morphologies and body sizes without analog among living physeteroids. Here we provide a redescription of Ontocetus oxymycterus, a large but incomplete fossil sperm whale specimen from the middle Miocene Monterey Formation of California, described by Remington Kellogg in 1925. The type specimen consists of a partial rostrum, both mandibles, an isolated upper rostrum fragment, and incomplete tooth fragments. Although incomplete, these remains exhibit characteristics that, when combined, set it apart morphologically from all other known physeteroids (e.g., a closed mesorostral groove, and the retention of enameled tooth crowns). Kellogg originally placed this species in the genus Ontocetus, a enigmatic tooth taxon reported from the 19th century, based on similarities between the type specimen Ontocetus emmonsi and the conspicuously large lower dentition of Ontocetus oxymycterus. However, the type of the genus Ontocetus is now known to represent a walrus tusk (belonging to fossil Odobenidae) instead of a cetacean tooth. Thus, we assign this species to the new genus Albicetus, creating the new combination of Albicetus oxymycterus, gen. nov. We provide new morphological observations of the type specimen, including a 3D model. We also calculate a total length of approximately 6 m in life, using cranial proxies of body size for physeteroids. Lastly, a phylogenetic analysis of Albicetus oxymycterus with other fossil and living Physeteroidea resolves its position as a stem physeteroid, implying that large body size and robust dentition in physeteroids evolved multiple times and in distantly related lineages.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Cachalote/anatomia & histologia , Dente/anatomia & histologia , Morsas/anatomia & histologia , Animais , Tamanho Corporal , California , Mamíferos/fisiologia , Filogenia , Cachalote/fisiologia , Dente/fisiologia , Morsas/fisiologia
3.
PLoS One ; 10(8): e0131856, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244784

RESUMO

The modern walrus, Odobenus rosmarus, is specialized and only extant member of the family Odobenidae. They were much more diversified in the past, and at least 16 genera and 20 species of fossil walruses have been known. Although their diversity increased in the late Miocene and Pliocene (around 8-2 Million years ago), older records are poorly known. A new genus and species of archaic odobenid, Archaeodobenus akamatsui, gen. et sp. nov. from the late Miocene (ca. 10.0-9.5 Ma) top of the Ichibangawa Formation, Hokkaido, northern Japan, suggests rapid diversification of basal Miocene walruses. Archaeodobenus akamatsui is the contemporaneous Pseudotaria muramotoi from the same formation, but they are distinguishable from each other in size and shape of the occipital condyle, foramen magnum and mastoid process of the cranium, and other postcranial features. Based on our phylogenetic analysis, A. akamatsui might have split from P. muramotoi at the late Miocene in the western North Pacific. This rapid diversification of the archaic odobenids occurred with a combination of marine regression and transgression, which provided geological isolation among the common ancestors of extinct odobenids.


Assuntos
Evolução Biológica , Fósseis , Crânio/anatomia & histologia , Morsas/anatomia & histologia , Animais , Japão
4.
PLoS One ; 9(6): e99569, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24924490

RESUMO

Species biogeography is a result of complex events and factors associated with climate change, ecological interactions, anthropogenic impacts, physical geography, and evolution. To understand the contemporary biogeography of a species, it is necessary to understand its history. Specimens from areas of localized extinction are important, as extirpation of species from these areas may represent the loss of unique adaptations and a distinctive evolutionary trajectory. The walrus (Odobenus rosmarus) has a discontinuous circumpolar distribution in the arctic and subarctic that once included the southeastern Canadian Maritimes region. However, exploitation of the Maritimes population during the 16th-18th centuries led to extirpation, and the species has not inhabited areas south of 55°N for ∼250 years. We examined genetic and morphological characteristics of specimens from the Maritimes, Atlantic (O. r. rosmarus) and Pacific (O. r. divergens) populations to test the hypothesis that the first group was distinctive. Analysis of Atlantic and Maritimes specimens indicated that most skull and mandibular measurements were significantly different between the Maritimes and Atlantic groups and discriminant analysis of principal components confirmed them as distinctive groups, with complete isolation of skull features. The Maritimes walrus appear to have been larger animals, with larger and more robust tusks, skulls and mandibles. The mtDNA control region haplotypes identified in Maritimes specimens were unique to the region and a greater average number of nucleotide differences were found between the regions (Atlantic and Maritimes) than within either group. Levels of diversity (h and π) were lower in the Maritimes, consistent with other studies of species at range margins. Our data suggest that the Maritimes walrus was a morphologically and genetically distinctive group that was on a different evolutionary path from other walrus found in the north Atlantic.


Assuntos
DNA/genética , Extinção Biológica , Análise de Sequência de DNA/métodos , Morsas/anatomia & histologia , Morsas/genética , Animais , Canadá , DNA Mitocondrial/genética , Análise Discriminante , Feminino , Geografia , Haplótipos , Masculino , Mandíbula/anatomia & histologia , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Crânio/anatomia & histologia
5.
Theriogenology ; 77(5): 933-9, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22153266

RESUMO

Concentrations of serum estradiol-17ß and progesterone were monitored in six female walruses using an enzyme immunoassay. Progesterone concentrations increased from March to May in females aged 6 y or older, and subsequently declined (October). No significant elevation of estradiol-17ß concentration was detected before an elevation of progesterone concentration. Vaginal smears from four females were examined with Papanicolaou staining. In all females, most epithelial cells were basophilic intermediate-superficial cells; no color change from basophilic to eosinophilic of the cells was detected. Meanwhile, the percentage of anucleate cells in vaginal smears reached its highest value before the elevation of progesterone concentration, followed by an increase in the percentage of leukocytes. We inferred that the change in populations of anucleate cells and leukocytes in vaginal smears reflected ovarian status and CL formation in female walruses.


Assuntos
Progesterona/sangue , Estações do Ano , Vagina/citologia , Morsas/sangue , Animais , Núcleo Celular/ultraestrutura , Células Epiteliais/ultraestrutura , Estradiol/sangue , Feminino , Técnicas Imunoenzimáticas , Teste de Papanicolaou , Esfregaço Vaginal/veterinária , Morsas/anatomia & histologia
6.
J Morphol ; 269(4): 423-50, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18157860

RESUMO

Profiles with all orientations have been used to visualize the 3D structure of ivory from tusks of elephant, mammoth, walrus, hippopotamus, pig (bush, boar, and warthog), sperm whale, killer whale, and narwhal. Polished, forming, fractured, aged, and stained surfaces were prepared for microscopy using epi-illumination. Tusks have a minor peripheral component, the cementum, a soft derivative of the enamel layer, and a main core of dentine=ivory. The dentine is composed of a matrix of particles 5-20 microm in diameter in a ground substance containing dentinal tubules about 5 microm in diameter with a center to center spacing of 10-20 microm. Dentinal tubules may be straight (most) or curly (pigs). The main findings relate to the way that dentinal tubules align in sheets to form microlaminae in the length of the tusk. Microlaminae are sheets of laterally aligned dentinal tubules. They are axial but may be radial (most), angled to the forming face (pigs and hippopotamus canines), or radial but helical (narwhals). Within the microlaminae the dentinal tubules may be radial, angled to the axis (whales, walrus, and pigs), or may change their orientation from one microlamina to the next in helicoids (canines of hippopotamuses, incisors of proboscidea). In the nonbanded, featureless ivories from the hippopotamus incisors, the dentinal tubules form radial microlamina from which the arrangements in other ivories can be derived. In the canines of hippopotamuses and incisors of proboscidea, the dentinal tubule orientation changes incrementally from one microlamina to the next in a helicoid, a stack of dentinal tubules that change their orientation by 180 degrees anticlockwise. Dentinal tubules having different orientations are laid down concurrently, not layer by layer as in most examples of helicoidal architecture (e.g., insect cuticle). In proboscidean ivory, the microlaminae are radial, normal to the banding of growth layers marking the plane of deposition. They form radial segments with each 180 degrees turn in the orientation of their constituent dentinal tubules. Below the cementum they are almost complete 180 degrees helicoids, but nearer to the core they become narrower with the loss of radially oriented dentinal tubules. These truncated helicoidal patterns appear in longitudinal profile as VVVV feather patterns rather than intersection intersection intersection intersection, each V or intersection being the side view of a partial or complete helicoid. The Schreger pattern in proboscidean ivory consists of these helicoids divided tangentially into columns in the length of the tusk. Narwhals have the most abundant matrix particles with their radial/helical dentinal tubules having a twist opposite to that in the cementum.


Assuntos
Dentina/ultraestrutura , Dente/anatomia & histologia , Animais , Elefantes/anatomia & histologia , Humanos , Suínos/anatomia & histologia , Morsas/anatomia & histologia , Baleias/anatomia & histologia
7.
BMC Ecol ; 3: 9, 2003 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-14572316

RESUMO

BACKGROUND: Direct observations of underwater behaviour of free-living marine mammals are rare. This is particularly true for large and potentially dangerous species such as the walrus (Odobenus rosmarus). Walruses are highly specialised predators on benthic invertebrates - especially bivalves. The unique feeding niche of walruses has led to speculations as to their underwater foraging behaviour. Based on observations of walruses in captivity and signs of predation left on the sea floor by free-living walruses, various types of feeding behaviour have been suggested in the literature. In this study, however, the underwater feeding behaviour of wild adult male Atlantic walruses (O. r. rosmarus) is documented for the first time in their natural habitat by scuba-divers. The video recordings indicated a predisposition for use of the right front flipper during feeding. This tendency towards dextrality was explored further by examining a museum collection of extremities of walrus skeletons. RESULTS: During July and August 2001, twelve video-recordings of foraging adult male walruses were made in Young Sound (74 degrees 18 N; 20 degrees 15 V), Northeast Greenland. The recordings did not allow for differentiation among animals, however based on notes by the photographer at least five different individuals were involved. The walruses showed four different foraging behaviours; removing sediment by beating the right flipper, removing sediment by beating the left flipper, removing sediment by use of a water-jet from the mouth and rooting through sediment with the muzzle. There was a significant preference for using right flipper over left flipper during foraging. Measurements of the dimensions of forelimbs from 23 walrus skeletons revealed that the length of the right scapula, humerus, and ulna was significantly greater than that of the left, supporting our field observations of walruses showing a tendency of dextrality in flipper use. CONCLUSION: We suggest that the four feeding behaviours observed are typical of walruses in general, although walruses in other parts of their range may have evolved other types of feeding behaviour. While based on small sample sizes both the underwater observations and skeletal measurements suggest lateralized limb use, which is the first time this has been reported in a pinniped.


Assuntos
Comportamento Alimentar/fisiologia , Membro Anterior/anatomia & histologia , Lateralidade Funcional/fisiologia , Morsas/anatomia & histologia , Morsas/fisiologia , Animais , Oceano Atlântico , Feminino , Membro Anterior/fisiologia , Groenlândia , Úmero/anatomia & histologia , Masculino , Moluscos , Rádio (Anatomia)/anatomia & histologia , Escápula/anatomia & histologia , Frutos do Mar , Ulna/anatomia & histologia , Gravação de Videoteipe
8.
Am J Phys Anthropol ; 63(3): 315-22, 1984 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-6731603

RESUMO

A method is described that will indicate the direction that an abrasive particle was traveling as it scored the surface of a brittle material. Light and scanning electron micrographs of glass, dentine, and enamel abraded by loose and, steel carbide, and diamond indicate that partial Hertzian fracture cones are formed at the margins of wear striations during abrasion. The bases of these fracture cones face in the direction of travel of the abrasive particle and, therefore, indicate directionality. Because this method is based only on the consistent geometry of fracturing of brittle materials, it is independent of the loading of the abrasive particle. The only other method available to determine directionality of striations is unreliable since it uses the width of striations, and, hence, is dependent upon a consistent loading regime of the abrasive particle. This new method has direct application for determining the direction of movement of the jaws during mastication in living or fossil animals.


Assuntos
Abrasão Dentária/patologia , Animais , Cervos/anatomia & histologia , Esmalte Dentário/ultraestrutura , Dentina/ultraestrutura , Fósseis , Vidro , Humanos , Microscopia Eletrônica de Varredura , Morsas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...